Design Table for Glued Laminated Timber Arches for Vertical and Wind Loads Values shown are for preliminary design only. A simplified loading system was used for the preliminary design of the arches in these tables. For final design, the designer should use the loads and method of loading required by the applicable building code. | | | | Span = 30 ft | | | | Span = 35 ft | | | | Span = 40 ft | | | | | | | |---|---------------|----------------------|----------------------|----------------------|---|-------------------|------------------|----------------------|----------------------|---|-------------------|--|----------------------|----------------------|------------------------|-------------------|-------------------| | Loading | Roof
Pitch | Wall
Height
ft | Width
in.
(b) | Base
in.
(d) | L.T.
in. | U.T.
in. | Crown
in. | Width
in.
(b) | Base
in.
(d) | L.T.
in. | U.T.
in. | Crown
in. | Width
in.
(b) | Base
in.
(d) | L.T.
in. | U.T.
in. | Crown
in. | | Vertical Dead Load = 240 plf Horizontal Wind Load = 320 plf | 10/12 | 8
10
12 | 51/8
51/8
51/8 | 7½
7½
7½ | 7½
9¼
11¼ | 11
12½
13¾ | 7½
12½
13¾ | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 7½
10
12 | 12
13¼
14¾ | 101/ ₄
8
71/ ₂ | 51/8
51/8
51/8 | 7½
7½
7½ | 81/4
103/4
123/4 | 13
14¼
15¾ | 12¾
11¾
9¾ | | | 12/12 | 8
10
12 | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 7½
9¾
11¾ | 12½
13¾
15¼ | 8¾
9
15¼ | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 81/4
101/2
121/2 | 13½
15
16½ | 12
10¼
9 | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 8¾
11
13¼ | 14¾
16¼
17½ | 14½
13¾
11¾ | | | 14/12 | 8
10
12 | 51/s
51/s
51/s | 7½
7½
7½
7½ | 8¾
11¼
13¼ | 13¾
15¼
17 | 10½
8¼
17 | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 9
11½
14 | 15
16½
18 | 13¾
12¼
8¼ | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 9½
12½
14½ | 16¼
18
19½ | 16¼
15¾
14¼ | | Vertical Dead Load = 320 plf Horizontal Wind Load = 320 plf | 10/12 | 8
10
12 | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 7½
10
12 | 10¾
12
13¼ | 9
7½
13¼ | 51/8
51/8
51/8 | 7½
7½
7½ | 8½
10¾
12¾ | 11¾
13
14¼ | 11½
10½
8½ | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 9
11½
13¾ | 13
14
15¼ | 13
13½
12½ | | | 12/12 | 8
10
12 | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 81/4
101/2
121/2 | 12¼
13½
15 | 10¼
9
9 | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 9
11¼
13¼ | 13¼
14¾
16 | 13¼
12¼
10½ | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 9½
12
14¼ | 14¾
15¾
17¼ | 14¾
15¼
14¼ | | | 14/12 | 8
10
12 | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 8 ³ / ₄
10 ³ / ₄
12 ³ / ₄ | 13½
15
16½ | 12
10¼
8¼ | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 9½
11¾
13¾ | 14¾
16¼
17¾ | 14 ³ / ₄
14 ¹ / ₄
12 ¹ / ₂ | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 10
12½
14¾ | 16½
17½
19¼ | 16½
17¼
16½ | | Load
= 480 plf
Horizontal
Wind | 10/12 | 8
10
12 | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 9
11¼
13½ | 10½
11½
12¾ | 10½
10¼
8¾ | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 9 ³ / ₄
12 ¹ / ₄
14 ³ / ₄ | 12
12½
13½ | 12
12½
12½ | 51/8
51/8
51/8 | 8
7¾
7¾ | 10½
13¼
16 | 13½
14
14¾ | 13½
14
14¾ | | | 12/12 | 8
10
12 | 51/8
51/8
51/8 | 7½
7½
7½ | 9¼
11¾
13¾ | 12
13¼
14½ | 12
11½
10 | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 10¼
12¾
15 | 13½
14¼
15½ | 13½
14¼
14 | 51/8
51/8
51/8 | 7¾
7¾
7¾ | 11
13¾
16¼ | 15¼
15¾
16¾ | 15¼
15¾
16¾ | | | 14/12 | 8
10
12 | 51/8
51/8
51/8 | 7½
7½
7½ | 9¾
12
14¼ | 13¼
14¾
16 | 13¼
13
11½ | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 10½
13
15½ | 15
16
17½ | 15
16
15½ | 51/8
51/8
51/8 | 7¾
7¾
7¾ | 11¼
14
16½ | 17
17¾
18¾ | 17
17¾
18¾ | L.T. = Lower Tangent, U.T. = Upper Tangent See Table Specifications ## Design Table for Glued Laminated Timber Arches for Vertical and Wind Loads (continued) Values shown are for preliminary design only. A simplified loading system was used for the preliminary design of the arches in these tables. For final design, the designer should use the loads and method of loading required by the applicable building code. | | | | Span = 50 ft | | | | | | | | |---------------------------|---------------|----------------------|----------------------|---|---|-------------------|-------------------|--|--|--| | Loading | Roof
Pitch | Wall
Height
ft | Width
in.
(b) | Base
in.
(d) | L.T.
in. | U.T.
in. | Crown
in. | | | | | Vertical
Dead
Load | 10/12 | 8
10
12 | 51/s
51/s
51/s | 7½
7½
7½ | 9¼
12
14¼ | 15½
16¼
17½ | 15½
16¼
16 | | | | | = 240 plf Horizontal | 12/12 | 8
10
12 | 51/8
51/8
51/8 | 7½
7½
7½
7½ | 9 ³ / ₄
12 ¹ / ₂
14 ³ / ₄ | 17½
18½
20 | 17½
18½
18¼ | | | | | Wind
Load
= 320 plf | 14/12 | 8
10
12 | 51/8
51/8
51/8 | 7½
7¾
8¼ | 10¼
13¼
16 | 19½
20½
22 | 19½
20½
20¾ | | | | | Vertical
Dead
Load | 10/12 | 8
10
12 | 51/8
51/8
51/8 | 8
7¾
7¾ | 10
13
15¾ | 15¾
16½
17¼ | 15¾
16½
17¼ | | | | | = 320 plf Horizontal | 12/12 | 8
10
12 | 5½
5½
5½ | 7 ³ / ₄
7 ³ / ₄
7 ³ / ₄ | 10½
13½
16 | 17¾
18¾
19½ | 17¾
18¾
19½ | | | | | Wind
Load
= 320 plf | 14/12 | 8
10
12 | 51/8
51/8
51/8 | 7¾
7¾
8 | 10½
13¾
16½ | 19¾
20¾
21¾ | 19¾
20¾
21¾ | | | | | Vertical
Dead
Load | 10/12 | 8
10
12 | 51/8
51/8
51/8 | 10¼
10
9¾ | 11¼
15¼
18 | 16½
17
17½ | 16½
17
17½ | | | | | = 480 plf Horizontal | 12/12 | 8
10
12 | 51/8
51/8
51/8 | 9³⁄4
9³⁄4
9¹⁄2 | 11¾
15½
18¼ | 18½
19
19¾ | 18½
19
19¾ | | | | | Wind
Load
= 320 plf | 14/12 | 8
10
12 | 51/8
51/8
51/8 | 9½
9½
9½
9½ | 12
15½
18½ | 20½
21¼
22¼ | 20½
21¼
22¼ | | | | L.T. = Lower Tangent, U.T. = Upper Tangent See Table Specifications ## **Table Specifications** - 1. **Preliminary Design Only.** Sizes are for arches manufactured with Douglas Fir -- Larch lumber using a 9'-4" haunch radius and based on the following design criteria: - a. Bending design value, $F_b = 2400 \text{ psi}$ - b. Shear design value, $F_v = 165 \text{ psi}$ - c. Compression parallel to grain, $F_c = 1500 \text{ psi}$ - d. Modulus of elasticity, E = 1,600,000 psi - e. Tabular design values are increased by 15% for two-month duration for snow or live loads and 33% for wind or earthquake loads. Design values for other softwood species can be found in AITC 117 – Design. - 2. Vertical arch legs are laterally supported. - 3. Vertical dead and live loads are uniformly distributed on the horizontal projection of arch. - 4. Horizontal wind loads are uniformly distributed on the entire vertical projection of arch. - 5. Many building codes require special loadings for arches, such as: - a. Full unbalanced live loads. - b. Simultaneous application of dead, live and wind loads. - c. Different components of wind loads to be applied to windward wall, windward slope, leeward wall and leeward slope, depending on arch geometry. Unique loading requirements, different arch geometries or special deflection controls must be checked by a competent designer. Thrust load must also be considered at the base of arch. 6. Many arch configurations other than those tabulated can be utilized. Additional information on arch design is available from AITC laminators, the *Timber Construction Manual*, and *AITC Technical Note No. 23*. While these specifications have been prepared in accordance with recognized engineering principles and are based on the most accurate technical data available, they should not be used without competent professional examination and verification of their accuracy, suitability and applicability by a licensed design professional. Any user of this information assumes all risks and liability arising from such use.